⇦ | ![]() | ⇨ |
The wavelength of light emitted from second orbit to first orbit in a hydrogen atom is
Options
(a) 1.215×10⁻⁷ m
(b) 1.215×10⁻⁵ m
(c) 1.215×10⁻⁴ m
(d) 1.215×10⁻³ m
Correct Answer:
1.215×10⁻⁷ m
Explanation:
For hydrogen atom, energy = -(13.6 / n²) eV
Energy radiated = 13.6 [(1/1²) – (1/2²)] = [(13.6 × 3) / 4] eV
Energy = hc / λ = [(6.6 × 10⁻³⁴ × 3 × 10⁸) / λ × 1.6 × 10⁻¹⁹] eV
[(13.6 × 3) / 4] = [(6.6 × 10⁻³⁴ × 3 × 10⁸) / λ × 1.6 × 10⁻¹⁹]
λ = (6.6 × 3 × 4 × 10⁻²⁶) / (13.6 × 3 × 1.6 × 10⁻¹⁹) = 1.215 × 10⁻⁷ m
Related Questions:
- A thin rod of length L and mass M is held vertically with one end on the floor
- A geostationary satellite is orbiting the earth at a height of 5R above that surface
- If the series limit of Lyman series for hydrogen atom is equal to the series limit
- Two closed organ pipes when sounded simultaneously give 4 beats/second.
- The most important characteristic of electron in the production of X-rays is
Topics: Atoms and Nuclei
(136)
Subject: Physics
(2479)
Important MCQs Based on Medical Entrance Examinations To Improve Your NEET Score
18000+ students are using NEETLab to improve their score. What about you?
Solve Previous Year MCQs, Mock Tests, Topicwise Practice Tests, Identify Weak Topics, Formula Flash cards and much more is available in NEETLab Android App to improve your NEET score.
Share this page with your friends
Leave a Reply