The potential difference that must be applied to stop the fastest photoelectrons

The Potential Difference That Must Be Applied To Stop The Physics Question

The potential difference that must be applied to stop the fastest photoelectrons emitted by a nickel surface, having work function 5.01 eV, when ultraviolet light of 200 nm falls on it, must be:

Options

(a) 2.4 V
(b) – 1.2 V
(c) – 2.4 V
(d) 1.2 V

Correct Answer:

1.2 V

Explanation:

Kₘₐₓ = hc / – W = hc / λ – 5.01
= 12375 / λ(in Å) – 5.01
12375 / 2000 – 5.01 = 6.1875 – 5.01 = 1.17775
= 1.2 V

Related Questions:

  1. Which of the following substances has the highest elasticity?
  2. Two thin dielectric slabs of dielectric constants K₁ and K₂, (K₁ < K₂) are inserted
  3. As a light wave travels from one medium to another which of its following properties
  4. If (range)² is 48 times (maximum height)², then angle of projection is
  5. At what distance from the centre of earth, the value of acceleration due to gravity

Topics: Dual Nature of Matter and Radiation (150)
Subject: Physics (2479)

Important MCQs Based on Medical Entrance Examinations To Improve Your NEET Score

18000+ students are using NEETLab to improve their score. What about you?

Solve Previous Year MCQs, Mock Tests, Topicwise Practice Tests, Identify Weak Topics, Formula Flash cards and much more is available in NEETLab Android App to improve your NEET score.

NEETLab Mobile App

Share this page with your friends

Be the first to comment

Leave a Reply

Your email address will not be published.


*