⇦ | ![]() | ⇨ |
The current in a self-inductance L=40 mH is to be increased uniformly from 1A to 11A in 4 ms. The emf indued in the inductor during the process is
Options
(a) 100 V
(b) 0.4 V
(c) 40 V
(d) 440 V
Correct Answer:
100 V
Explanation:
Consider the inductor of inductance L.
The current flowing through the inductor is i.
Now, we can write ɸ = Li
where, ɸ is magnetic flux linked with the inductor dɸ / dt = L (di / dt)
Given, L = 40 mH
dt = change in time = t₂ – t₁ = 4 ms = Δi
So, dɸ / dt = Δɸ / dt = L (Δi / dt) = (40 mH) [10 /4 ms] = 10 × 10 = 100 —-(i)
According to Faraday’s law of electromagnetic induction, Emf induced, e = -(dɸ / dt)
|e| = Δɸ / dt = 100 V [from equation (i)]
Related Questions:
- Slope of PV and V for an isobaric process will be
- A conveyor belt is moving at a constant speed of 2 m/s. A box is gently dropped on it
- Wires A and B are made from the same material. A has twice the diameter and three times
- A thin circular ring of mass M and radius R rotates about an axis through its centre
- The minimum number of NAND gates used to construct an OR gate is
Topics: Electromagnetic Induction
(76)
Subject: Physics
(2479)
Important MCQs Based on Medical Entrance Examinations To Improve Your NEET Score
18000+ students are using NEETLab to improve their score. What about you?
Solve Previous Year MCQs, Mock Tests, Topicwise Practice Tests, Identify Weak Topics, Formula Flash cards and much more is available in NEETLab Android App to improve your NEET score.
Share this page with your friends
Leave a Reply