⇦ | ![]() | ⇨ |
The current in a self-inductance L=40 mH is to be increased uniformly from 1A to 11A in 4 ms. The emf indued in the inductor during the process is
Options
(a) 100 V
(b) 0.4 V
(c) 40 V
(d) 440 V
Correct Answer:
100 V
Explanation:
Consider the inductor of inductance L.
The current flowing through the inductor is i.
Now, we can write ɸ = Li
where, ɸ is magnetic flux linked with the inductor dɸ / dt = L (di / dt)
Given, L = 40 mH
dt = change in time = t₂ – t₁ = 4 ms = Δi
So, dɸ / dt = Δɸ / dt = L (Δi / dt) = (40 mH) [10 /4 ms] = 10 × 10 = 100 —-(i)
According to Faraday’s law of electromagnetic induction, Emf induced, e = -(dɸ / dt)
|e| = Δɸ / dt = 100 V [from equation (i)]
Related Questions:
- The half life of radium is about 1600 year. Of 100 gram of radium existing now
- 1 Wb/m² equal to
- A parallel beam of light of wavelength λ is incident normally on a narrow slit
- SI unit of magnetic dipole moment is
- Water falls from a height of 60m at the rate of 15 kg/s to operate a turbine
Topics: Electromagnetic Induction
(76)
Subject: Physics
(2479)
Important MCQs Based on Medical Entrance Examinations To Improve Your NEET Score
18000+ students are using NEETLab to improve their score. What about you?
Solve Previous Year MCQs, Mock Tests, Topicwise Practice Tests, Identify Weak Topics, Formula Flash cards and much more is available in NEETLab Android App to improve your NEET score.
Share this page with your friends
Leave a Reply