| ⇦ |
| ⇨ |
The acceleration due to gravity near the surface of a planet of radius R and density d is proportional to
Options
(a) d/R²
(b) dR²
(c) dR
(d) d/R
Correct Answer:
dR
Explanation:
g=GM/R²
(M=Mass of the earth); (R=Distance of body from centre of earth)
g=G Volume x density / R²
Volume of the sphere=4/3 πR³
Therefore, g=G.4/3 πR³.d / R²
g=G 4/3 πRd
g=4πG/3.dR
g is proportional to dR
Related Questions: - A nucleus at rest splits into two nuclear parts having radii in the ratio 1:2.
- Two liquid drops having diameters of 1 cm and 1.5 cm. The ratio of excess
- A radioactive substance has a half-life of four months. Three-fourth of substance
- An α-particle and a proton travel with the same velocity in a magnetic field
- What is the nature of Gaussian surface involved in Gauss’s law of electrostatics?
Topics: Gravitation
(63)
Subject: Physics
(2479)
Important MCQs Based on Medical Entrance Examinations To Improve Your NEET Score
- A nucleus at rest splits into two nuclear parts having radii in the ratio 1:2.
- Two liquid drops having diameters of 1 cm and 1.5 cm. The ratio of excess
- A radioactive substance has a half-life of four months. Three-fourth of substance
- An α-particle and a proton travel with the same velocity in a magnetic field
- What is the nature of Gaussian surface involved in Gauss’s law of electrostatics?
Topics: Gravitation (63)
Subject: Physics (2479)
Important MCQs Based on Medical Entrance Examinations To Improve Your NEET Score
18000+ students are using NEETLab to improve their score. What about you?
Solve Previous Year MCQs, Mock Tests, Topicwise Practice Tests, Identify Weak Topics, Formula Flash cards and much more is available in NEETLab Android App to improve your NEET score.
Share this page with your friends

Leave a Reply