A ballon rises from rest with a constant acceleration g/8. A stone is released

A Ballon Rises From Rest With A Constant Acceleration 98 Physics Question

A ballon rises from rest with a constant acceleration g/8. A stone is released from it when it has risen to height h.The time taken by the stone to reach the ground is

Options

(a) 4√(h/g)
(b) 2√(h/g)
(c) √(2h/g)
(d) √(g/h)

Correct Answer:

2√(h/g)

Explanation:

No explanation available. Be the first to write the explanation for this question by commenting below.

Related Questions:

  1. Two coils have the mutual inductance of 0.05 H.
  2. A thin wire of length L and mass M is bent to form a semicircle.
  3. If a small sphere is let fall vertically in a large quantity of still liquid of density
  4. According to Hook’s law, force is proportional to
  5. Two bodies of mass 1 kg and 3 kg have positive vectors i + 2j + k and -3i -2j + k

Question Type: A (1)
Difficulty Level: Medium (3)
Topics: Motion in Straight Line (93)
Subject: Physics (2479)

Important MCQs Based on Medical Entrance Examinations To Improve Your NEET Score

18000+ students are using NEETLab to improve their score. What about you?

Solve Previous Year MCQs, Mock Tests, Topicwise Practice Tests, Identify Weak Topics, Formula Flash cards and much more is available in NEETLab Android App to improve your NEET score.

NEETLab Mobile App

Share this page with your friends

1 Comment on A ballon rises from rest with a constant acceleration g/8. A stone is released

  1. The velocity of the balloon at the height h is
    v = √(2ah) = √(2gh/8) = √(gh)/2

    Initial velocity of the stone at height h is u = √(gh)/2 upwards
    h = ut + gt²/2
    put the value of u in the above relation and rearrange the terms to obtain,
    (√(gH)/2 )t  + gt²/2 – h = 0

    (√(gH))t  + gt² – 2h = 0

    The time taken by the stone to reach the ground can be obtained by solving the above quadratic.

    t = 2√[h/g]

Leave a Reply

Your email address will not be published.


*