The speed of an electron having a wavelength of 10⁻¹⁰ m is

The Speed Of An Electron Having A Wavelength Of 10 Physics Question

The speed of an electron having a wavelength of 10⁻¹⁰ m is

Options

(a) 6.26×10⁶ m/s
(b) 5.25 x10⁶ m/s
(c) 7.25×10⁶ m/s
(d) 4.24×10⁶ m/s

Correct Answer:

7.25×10⁶ m/s

Explanation:

λ = h / momentum = h / mv

v = h / mλ = 6.6 × 10⁻³⁴ / (9 × 10⁻³¹) × 10⁻¹°

v = 7.25 × 10⁶ ms⁻¹

Related Questions:

  1. The second overtone of an open pipe is in resonance with the first overtone
  2. If a body travels half the distance with velocity v1 and the next half with velocity v2
  3. The induced emf in a coil of 10 H inductance in which current varies
  4. A charge Q is uniformly distributed over a large plastic plate. The electric field
  5. A particle of mass M is suited at the centre of a spherical shell of same mass and radius

Topics: Dual Nature of Matter and Radiation (150)
Subject: Physics (2479)

Important MCQs Based on Medical Entrance Examinations To Improve Your NEET Score

18000+ students are using NEETLab to improve their score. What about you?

Solve Previous Year MCQs, Mock Tests, Topicwise Practice Tests, Identify Weak Topics, Formula Flash cards and much more is available in NEETLab Android App to improve your NEET score.

NEETLab Mobile App

Share this page with your friends

1 Comment on The speed of an electron having a wavelength of 10⁻¹⁰ m is

  1. P=h/lamba…..1equ
    P= momentum
    H=Planck’s constant
    Lamba= wavelength
    And
    P=MV…..2 equ
    M= mass
    V= speed
    Put 2 in 1
    MV=h/lamba
    9.1×10^-31*v=6.6×10^-34/10^-10
    By solving u get the value of v
    V=0.725*10^7=7.25*10^6

Leave a Reply

Your email address will not be published.


*