⇦ | ![]() | ⇨ |
The radius of gyration of a solid sphere of radius r about a certain axis is r. The distance of this axis from the centre of the sphere is
Options
(a) r
(b) 0.5r
(c) √(0.6)r
(d) √(0.4)r
Correct Answer:
√(0.6)r
Explanation:
No explanation available. Be the first to write the explanation for this question by commenting below.
Related Questions:
- An alternating emf given by equation
e=300 sin[(100 π)t] V
- A scooter is going round a circular road of radius 100 m at a speed of 10m/s
- When an α-particle of mass m moving with velocity ν bombards on a heavy nucleus
- Which one of the following statements is WRONG in the context of X-rays generated
- A pure semiconductor behaves slightly as a conductor at
Topics: Motion of system of Particles and Rigid Body
(73)
Subject: Physics
(2479)
Important MCQs Based on Medical Entrance Examinations To Improve Your NEET Score
18000+ students are using NEETLab to improve their score. What about you?
Solve Previous Year MCQs, Mock Tests, Topicwise Practice Tests, Identify Weak Topics, Formula Flash cards and much more is available in NEETLab Android App to improve your NEET score.
Share this page with your friends
Using parallel axis theorem ,
I =Icm(about the centre of mass) + M(mass of the sphere)h2. where h is the required distance of the axis from centre of sphere
MK2 = 2/5 MR2. + Mh2
K2= 2R2/5 + h2
R2 = 2R2/5. + h2. (given that. K=R. )
3R2/5 = h2
Which gives h=√3/5R2
h=√0.6. R. (Answer)