The potential difference that must be applied to stop the fastest photoelectrons

The Potential Difference That Must Be Applied To Stop The Physics Question

The potential difference that must be applied to stop the fastest photoelectrons emitted by a nickel surface, having work function 5.01 eV, when ultraviolet light of 200 nm falls on it, must be:

Options

(a) 2.4 V
(b) – 1.2 V
(c) – 2.4 V
(d) 1.2 V

Correct Answer:

1.2 V

Explanation:

Kₘₐₓ = hc / – W = hc / λ – 5.01
= 12375 / λ(in Å) – 5.01
12375 / 2000 – 5.01 = 6.1875 – 5.01 = 1.17775
= 1.2 V

Related Questions:

  1. The electron drift speed is small and the change of the electron is also small
  2. If the binding energy of the electron in a hydrogen atom is 13.6 eV, the energy
  3. If F⃗ is the force acting on a particle having position vector r⃗ and ? ⃗ be the torque
  4. In common base circuit of a transistor, current amplification factor is 0.95.
  5. A charge Q is enclosed by a Gaussian spherical surface of radius R

Topics: Dual Nature of Matter and Radiation (150)
Subject: Physics (2479)

Important MCQs Based on Medical Entrance Examinations To Improve Your NEET Score

18000+ students are using NEETLab to improve their score. What about you?

Solve Previous Year MCQs, Mock Tests, Topicwise Practice Tests, Identify Weak Topics, Formula Flash cards and much more is available in NEETLab Android App to improve your NEET score.

NEETLab Mobile App

Share this page with your friends

Be the first to comment

Leave a Reply

Your email address will not be published.


*