In the Bohr’s model of hydrogen atom, the ratio of the kinetic energy to the total

In The Bohrs Model Of Hydrogen Atom The Ratio Of Physics Question

In the Bohr’s model of hydrogen atom, the ratio of the kinetic energy to the total energy of the electron in nth quantum state is

Options

(a) (-1)
(b) (+1)
(c) (-2)
(d) (+2)

Correct Answer:

(-1)

Explanation:

In Bohr’s model of hydrogen atom, the kinetic energy of the electron in nᵗʰ state is given by
K = me⁴ / 8ε₀²h²n² = (13.6 / n²) eV
where, me⁴ / 8ε₀²h² = 13.6 eV
The potential energy of electron in nᵗʰ state is given by
U = -2me⁴ / 8ε₀²h²n² = (-27.2 / n²) eV
Total energy of electron in nᵗʰ state is given by
E = K + U = (me⁴ / 8ε₀²h²n² ) – (2me⁴ / 8ε₀²h²n²)
E = -me⁴ / 8ε₀²h²n² = (-13.6 / n ²) eV
.·. K / E = -1

Related Questions:

  1. A light of wavelength 5000Å falls on a sensitive plate with photoelectric work
  2. An electron in hydrogen atom makes a transition n₁ → n₂
  3. Monochromatic radiation emitted when electron on hydrogen atom
  4. A rectangular copper coil is placed in a uniform magnetic field of induction 40 mT
  5. Two charges each equal to 2µ C are 0.5m apart. If both of them exist inside vacuum

Topics: Atoms and Nuclei (136)
Subject: Physics (2479)

Important MCQs Based on Medical Entrance Examinations To Improve Your NEET Score

18000+ students are using NEETLab to improve their score. What about you?

Solve Previous Year MCQs, Mock Tests, Topicwise Practice Tests, Identify Weak Topics, Formula Flash cards and much more is available in NEETLab Android App to improve your NEET score.

NEETLab Mobile App

Share this page with your friends

Be the first to comment

Leave a Reply

Your email address will not be published.


*