In the Bohr’s model of hydrogen atom, the ratio of the kinetic energy to the total

In the Bohr’s model of hydrogen atom, the ratio of the kinetic energy to the total energy of the electron in nth quantum state is

Options

(a) (-1)
(b) (+1)
(c) (-2)
(d) (+2)

Correct Answer:

(-1)

Explanation:

In Bohr’s model of hydrogen atom, the kinetic energy of the electron in nᵗʰ state is given by
K = me⁴ / 8ε₀²h²n² = (13.6 / n²) eV
where, me⁴ / 8ε₀²h² = 13.6 eV
The potential energy of electron in nᵗʰ state is given by
U = -2me⁴ / 8ε₀²h²n² = (-27.2 / n²) eV
Total energy of electron in nᵗʰ state is given by
E = K + U = (me⁴ / 8ε₀²h²n² ) – (2me⁴ / 8ε₀²h²n²)
E = -me⁴ / 8ε₀²h²n² = (-13.6 / n ²) eV
.·. K / E = -1

admin:

Related Questions

  1. A string is stretched between fixed points seperated by 75 cm. It is observed
  2. When a bullet of mass 10 g and speed 100 ms⁻¹ penetrates up to distance 1 cm
  3. A sample of radioactive element has a mass of 10 gram at an instant t=0.
  4. An α-particle and a proton travel with the same velocity in a magnetic field
  5. A parallel plate air capacitor is connected to battery. After charging fully