Van der waals,equation of state is(p+a/v²)(V-b)=nRT. The dimensions of a and b

Van der waals,equation of state is(p+a/v²)(V-b)=nRT. The dimensions of a and b are

Options

(a) [ML³T²],[ML³T⁰]
(b) [ML⁵T⁻²],[M⁰L³T⁰]
(c) [M²LT²],[ML³T²]
(d) [ML²T],[ML²T²]

Correct Answer:

[ML⁵T⁻²],[M⁰L³T⁰]

Explanation:

((p+a/v²)(V-b)) / nT =R

Since we have (p+a/v²), the term a/v² needs to have units of pressure for subtraction to proceed.

Therefore, aV² = pressure
a = pressure  x Volume²
=[ML⁻¹T⁻²] x (L³)²
=ML⁵T⁻²
In case of variable b, it should be same as volume as v-b should work.
b=(L³)
admin:

Related Questions

  1. If angular momentum of a body is increased by 200% its kinetic energy will increase
  2. The kirchoff’s first law (∑i=0) and second law (∑iR=∑E), where the symbols
  3. In a capillary tube water raises by 1.2 mm. The height of water that will rise
  4. A long straight wire of radius a carries a steady current I. The current is uniformly
  5. A particle of mass ‘m’ is kept at rest at a height 3R from the surface of earth