Two waves are represented by the equations y₁ = a sin (?t + kx + 0.57) m

Two waves are represented by the equations y₁ = a sin (?t + kx + 0.57) m and y₂ = a cos (?t + kx) m, where x is in meter and t in sec. The phase difference between them is

Options

(a) 1.0 radian
(b) 1.25 radian
(c) 1.57 radian
(d) 0.57 radian

Correct Answer:

1.0 radian

Explanation:

Here, y₁ = a sin (?t + kx + 0.57 )
and y₂ = a cos (?t + kx )
= a sin [π/2 + (?t – kx)
Phase difference, ∆? = ?¬ツツ – ?¬ツチ
= π/2 – 0.57 = 3.14 / 2 – 0.57 = 1.57 – 0.57
1 radian

admin:

Related Questions

  1. A boy standing at the top of a tower of 20m height drops a stone
  2. A body of mass 2 kg is kept by pressing to a vertical wall by a force of 100 N
  3. The instantaneous angular position of a point on a rotating wheel is given by
  4. Water rises to a height h in a capillary at the surface of earth. On the surface
  5. A radio isotope X with a half life 1.4 x 10⁹ years decays to Y which is stable