The molar specific heats of an ideal gas at constant pressure and volume are denoted

The molar specific heats of an ideal gas at constant pressure and volume are denoted by Cp and Cv, respectively. If γ = Cp/Cv and R is the universal gas constant, then Cv is equal to

Options

(a) R / ( γ – 1)
(b) (γ – 1) / R
(c) γ R
(d) 1 + γ / 1 – γ

Correct Answer:

R / ( γ – 1)

Explanation:

Cₚ – Cᵥ = R ⇒ Cₚ = Cᵥ + R
γ = Cₚ / Cᵥ = Cᵥ + R / Cᵥ = Cᵥ / Cᵥ + R / Cᵥ
⇒ γ = 1 + R / Cᵥ ⇒ R / Cᵥ = γ – 1
⇒ Cᵥ = R / γ – 1

admin:

Related Questions

  1. Which of the following substances has the highest elasticity?
  2. Which one of the following statements is WRONG in the context of X-rays generated
  3. Point masses m₁ and m₂ are placed at the opposite ends of a rigid rod of length L,
  4. A radioactive nucleus of mass M emits a photon of frequency v and the nucleus recoils.
  5. The threshold frequency for a certain photosensitive metal is ν₀. When it is illuminated