The molar specific heats of an ideal gas at constant pressure and volume are denoted

The molar specific heats of an ideal gas at constant pressure and volume are denoted by Cp and Cv, respectively. If γ = Cp/Cv and R is the universal gas constant, then Cv is equal to

Options

(a) R / ( γ – 1)
(b) (γ – 1) / R
(c) γ R
(d) 1 + γ / 1 – γ

Correct Answer:

R / ( γ – 1)

Explanation:

Cₚ – Cᵥ = R ⇒ Cₚ = Cᵥ + R
γ = Cₚ / Cᵥ = Cᵥ + R / Cᵥ = Cᵥ / Cᵥ + R / Cᵥ
⇒ γ = 1 + R / Cᵥ ⇒ R / Cᵥ = γ – 1
⇒ Cᵥ = R / γ – 1

admin:

Related Questions

  1. A block of mass 10 kg is moving in X-direction with a constant speed of 10 ms⁻¹
  2. Electromagnets are made of soft iron because soft iron has
  3. A man of 50 kg mass is standing in a gravity free space at a height
  4. If a proton, a deuteron and an alpha particle, on being accelerated by the same
  5. A bullet loses 1/20 of its velocity after penetrating a plank.How many planks