If vectors A=cos wti + sin wtj and B= cos wt/2 i + sin wt/2 j are functions of time,

If vectors A=cos wti + sin wtj and B= cos wt/2 i + sin wt/2 j are functions of time, then the value of t at which they are orthogonal to each other is

Options

(a) t = π/2w
(b) t = π/w
(c) t=0
(d) t = π/4w

Correct Answer:

t = π/w

Explanation:

Two vectors are,
A = cos ωt î + sin ωt ĵ
B = cos (ωt/2) î + sin (ωt/2) ĵ
For two vectors A and B to be orthogonal
A.B = 0
A.B = 0 = cos ωt.cos (ωt/2) + sin ωt.sin (ωt/2)
= cos [ωt – (ωt/2)] = cos (ωt/2)
So, ωt/2 = π/2
.·. t = π/ω.

admin:

Related Questions

  1. Two identical flutes produce fundamental notes of frequency 300 Hz at 27° C
  2. An electric lamp is connected to 220 V, 50 Hz supply. Then the peak voltge is
  3. Two bodies of masses m and 4 m are moving with equal K.E. The ratio of their linear
  4. A coil of resistance and 1.0 H inductance is connected to an a.c. source of frequency
  5. Electric field intensity at a point in between two parallel sheets due to like