If uncertainty in position and momentum are equal, then uncertainty in velocity is :
Options
(a) 1/2m x √(h/π)
(b) √(h/2π)
(c) 1/m x √(h/π)
(d) √(h/π)
Correct Answer:
1/2m x √(h/π)
Explanation:
We known Δp.Δx ≥ h / 4π
or m.Δv.Δx = h / 4π [ .·. Δp = mΔV]
since Δp = Δx (given)
.·. Δp.Δp = h / 4π or mΔv = h / 4π
or (Δv)² = h / 4πm²
or Δv = √ h / 4πm² = 1 / 2 m √ h / π..
View Comments (2)
We Know that, Δx.Δp ≥ h/4π,
∵ x = p
we can find answer with using two formulae,
first- Δx.Δp ≥ h/4π,
second- Δx.Δv ≥ h/4mπ.
Here, Δx = Δp = y
According to Heisenberg's uncertainty principle
Δx*Δp = h/4π
y² = h/4π
y = √h/√4π
y = 1/2 √h/√π
So p(Momentum) = 1/2 √h/√π = mΔv
1/2 √h/√π = mΔv
1/2m √h/√π = Δv
So ans is..... Δv = 1/2m √h/√π