If M (A; Z), Mₚ and Mₙ denote the masses of the nucleus AZ X, proton

If M (A; Z), Mₚ and Mₙ denote the masses of the nucleus AZ X, proton and neutron respectively in units of u (1u = 931.5 MeV/c) and BE represents its bonding energy in MeV, then

Options

(a) M(A, Z) = ZMₚ + (A – Z)Mₙ – BE/c²
(b) M(A, Z) = ZMₚ + (A – Z)Mₙ + BE
(c) M(A, Z) = ZMₚ + (A – Z)Mₙ – BE
(d) M(A, Z) = ZMₚ + (A – Z)Mₙ + BE/c²

Correct Answer:

M(A, Z) = ZMₚ + (A – Z)Mₙ – BE/c²

Explanation:

Mass defect = ZMₚ + (A – Z)Mₙ – M(A – Z)
or, B.E. / c² = ZMₚ + (A – Z)Mₙ – M(A – Z)
M(A – Z) = ZMₚ + (A – Z)Mₙ – B.E. / c²

admin:

Related Questions

  1. A photon of energy 10.2 eV collide inelastically with hydrogen atom in ground state
  2. A ray of light is incident at an angle of incidence i, on one face of a prism
  3. Function of a rectifier is
  4. Which of the following transitions will have highest emission wavelength?
  5. A parallel plate condenser with a dielectric of dielectric constant K between the plates