An electric dipole of moment ‘p’ is placed in an elecatric field of intensity ‘E’

An electric dipole of moment ‘p’ is placed in an electric field of intensity ‘E’. The dipole acquires a position such that the axis of the dipole makes an angle θ with the direction of the field. Assuming that the potential energy of the dipole to be zero when = 90⁰, the torque and the potential energy of the dipole will respectively be:

Options

(a) p E sin θ, – p E cos θ
(b) p E sin θ, – 2 p E cos θ
(c) p E sin θ, p E cos θ
(d) p E cos θ, – p E sin θ

Correct Answer:

p E sin θ, – p E cos θ

Explanation:

The torque on the dipole is given as ? = p E sin θ. The potential energy of otghe dipole in the electric field is given as U = – p E cos θ.

admin:

Related Questions

  1. An artificial satellite is revolving round the earth in a circular orbit. Its velocity
  2. Wavefront is the locus of all points, where the particles of the medium
  3. The unit of specific conductivity is
  4. Light of wavelength λ from a point source falls on a small circular obstacle
  5. In which process, the P-V indicator diagram is a straight line parallel to volume