A ballon rises from rest with a constant acceleration g/8. A stone is released

A ballon rises from rest with a constant acceleration g/8. A stone is released from it when it has risen to height h.The time taken by the stone to reach the ground is

Options

(a) 4√(h/g)
(b) 2√(h/g)
(c) √(2h/g)
(d) √(g/h)

Correct Answer:

2√(h/g)

Explanation:

No explanation available. Be the first to write the explanation for this question by commenting below.

admin:

View Comments (1)

  • The velocity of the balloon at the height h is
    v = √(2ah) = √(2gh/8) = √(gh)/2

    Initial velocity of the stone at height h is u = √(gh)/2 upwards
    h = ut + gt²/2
    put the value of u in the above relation and rearrange the terms to obtain,
    (√(gH)/2 )t  + gt²/2 - h = 0

    (√(gH))t  + gt² - 2h = 0

    The time taken by the stone to reach the ground can be obtained by solving the above quadratic.

    t = 2√[h/g]

Related Questions

  1. A particle free to move along X-axis has potential energy given as U(X) =k(1-e⁻ˣ²)
  2. A microscope is having objective of focal length 1 cm and eye-piece of focal length 6 cm.
  3. The rest energy of an electron is
  4. The shortest wavelength in Lyman series is 91.2 nm. The largest wavelength
  5. The frequency of a light wave in a material is 2 x 10¹⁴ Hz and wavelength is 5000Å.