A ballon rises from rest with a constant acceleration g/8. A stone is released

A ballon rises from rest with a constant acceleration g/8. A stone is released from it when it has risen to height h.The time taken by the stone to reach the ground is

Options

(a) 4√(h/g)
(b) 2√(h/g)
(c) √(2h/g)
(d) √(g/h)

Correct Answer:

2√(h/g)

Explanation:

No explanation available. Be the first to write the explanation for this question by commenting below.

admin:

View Comments (1)

  • The velocity of the balloon at the height h is
    v = √(2ah) = √(2gh/8) = √(gh)/2

    Initial velocity of the stone at height h is u = √(gh)/2 upwards
    h = ut + gt²/2
    put the value of u in the above relation and rearrange the terms to obtain,
    (√(gH)/2 )t  + gt²/2 - h = 0

    (√(gH))t  + gt² - 2h = 0

    The time taken by the stone to reach the ground can be obtained by solving the above quadratic.

    t = 2√[h/g]

Related Questions

  1. A nucleus ᴢXᴬ emits an α- particle with velocity v. The recoil speed of the daughter
  2. A coin of mass m and radius r having moment of inertia I about the axis passes
  3. Penetrating power of X-rays does not depend on
  4. Two lenses of power 15 D and -3 D are placed in contact.
  5. Under constant pressure, graph between P and 1/V is a