The energy of second Bhor orbit of the hydrogen atom is -328 kJ mol⁻¹, hence the enregy

The energy of second Bhor orbit of the hydrogen atom is -328 kJ mol⁻¹, hence the enregy of fourth Bohr orbit would be

Options

(a) -41 kJ mol⁻¹
(b) -1312 kJ mol⁻¹
(c) -164 kJ mol⁻¹
(d) -82 kJ mol⁻¹

Correct Answer:

-82 kJ mol⁻¹

Explanation:

The energy of second Bohr orbit of hydrogen atom (E₂) is -328 kJ mol⁻¹therefore,
E₂ = – (1312/2²) kJ mol⁻¹
Eₙ = – (1312/n²) kJ mol⁻¹
If n= 4, E₄ = – (1312/4²) kJ mol⁻¹
= -82 kJ mol⁻¹

admin:

Related Questions

  1. Increase in boiling point of a sucrose solution is 0.1 K, then what is increases
  2. An example of redox reaction
  3. Which of the following statement is not correct with respect to soap
  4. Identify the correct statement:
  5. The species Ar,K⁺ and Ca²⁺ contain the same number of electrons.