The energy of second Bhor orbit of the hydrogen atom is -328 kJ mol⁻¹, hence the enregy

The energy of second Bhor orbit of the hydrogen atom is -328 kJ mol⁻¹, hence the enregy of fourth Bohr orbit would be

Options

(a) -41 kJ mol⁻¹
(b) -1312 kJ mol⁻¹
(c) -164 kJ mol⁻¹
(d) -82 kJ mol⁻¹

Correct Answer:

-82 kJ mol⁻¹

Explanation:

The energy of second Bohr orbit of hydrogen atom (E₂) is -328 kJ mol⁻¹therefore,
E₂ = – (1312/2²) kJ mol⁻¹
Eₙ = – (1312/n²) kJ mol⁻¹
If n= 4, E₄ = – (1312/4²) kJ mol⁻¹
= -82 kJ mol⁻¹

admin:

Related Questions

  1. If N and S both are present in an organic compound then during Lassaigne’s test,
  2. How many grams of dibasic acid (mol.wt.200) should be present in 100 mL.
  3. Method by which aniline cannot be prepared is
  4. Which of the following acts as both reducing and oxidising agent
  5. An oxygen containing organic compound upon oxidation forms a carboxylic acid