The energy of second Bhor orbit of the hydrogen atom is -328 kJ mol⁻¹, hence the enregy

The energy of second Bhor orbit of the hydrogen atom is -328 kJ mol⁻¹, hence the enregy of fourth Bohr orbit would be

Options

(a) -41 kJ mol⁻¹
(b) -1312 kJ mol⁻¹
(c) -164 kJ mol⁻¹
(d) -82 kJ mol⁻¹

Correct Answer:

-82 kJ mol⁻¹

Explanation:

The energy of second Bohr orbit of hydrogen atom (E₂) is -328 kJ mol⁻¹therefore,
E₂ = – (1312/2²) kJ mol⁻¹
Eₙ = – (1312/n²) kJ mol⁻¹
If n= 4, E₄ = – (1312/4²) kJ mol⁻¹
= -82 kJ mol⁻¹

admin:

Related Questions

  1. Which one of the following is tridentate ligand
  2. Froath floataton proess is used for the concentration of
  3. Argon gas was discovered by
  4. There are two containers containing gases,one at pressure 30 atm and volume
  5. In which of the following molecules is hydrogen bridge bond present