The angular velocity of a wheel increases from 100 rps to 300 rps in 10 seconds.

The angular velocity of a wheel increases from 100 rps to 300 rps in 10 seconds. The number of revolutions made during that time is

Options

(a) 600
(b) 1500
(c) 1000
(d) 2000

Correct Answer:

2000

Explanation:

Assuming constant angular acceleration,
α=2πx300-2πx100/10
=2πx200/10
=40 π radius/s²
ω²f-ω²i=2α.θ
θ=4π²(90000-10000)/2×2πx20
=2π(80000)/40
=2πx2000
.·. Total number of revolutions=2000.

admin:

View Comments (1)

  • Average rate = (100+300)/2 = 200 rotation per second
    In 10 second rotation = 200×10=2000

Related Questions

  1. The wavelength of X-rays is in the range
  2. A Carnot engine, having an efficiency of η=1/10 as heat engine, is used
  3. Which of the following is true for elastic potential energy density?
  4. A body of mass 2 kg travels according to the law x(t)=pt+qt²+rt³
  5. A bullet of mass 0.05 kg moving with a speed of 80 m/s enters a wooden