A disc of moment of inertia (9.8/π²) kg m² is rotating at 600 rpm. If the frequency

A disc of moment of inertia (9.8/π²) kg m² is rotating at 600 rpm. If the frequency of rotation changes from 600 rpm to 300 rpm then what is the work done?

Options

(a) 1470 J
(b) 1452 J
(c) 1567 J
(d) 1632 J

Correct Answer:

1470 J

Explanation:

Given: Moment of inertia I = (9.8/π²) kgm²

ʋ₁ = 600 rpm = 10 rps; ʋ₂ = 300 rpm = 5 rps

.·. ω₁ = 2π ʋ₁ = 20π rad s⁻¹

.·. ω₂ = 2π ʋ₂ = 10π rad s⁻¹

Kinetic energy of rotation= (1/2) Iω²

Work done W = change in rotational kinetic energy

.·. work done W = (1/2).I [ω₂² – ω₂²]

W = (1/2) x (9.8/π²).[(10π)² – (20π)²]

= (1/2) x (9.8/π²).[-300 π²] = -1470 J

-ve sign show that rotational kinetic energy decreases.

admin:

Related Questions

  1. The force of repulsion between two electrons at a certain distance is F.
  2. A particle moving along a straight line OX.At a time (in second ) the distance
  3. The density of ice is 0.9 g/cc and that of sea water is 1.1 g/cc
  4. In which process, the P-V indicator diagram is a straight line parallel to volume
  5. The wave described by y = 0.25 sin (10 2πx – 2πt), where x and y are in meters