A disc of moment of inertia (9.8/π²) kg m² is rotating at 600 rpm. If the frequency

A disc of moment of inertia (9.8/π²) kg m² is rotating at 600 rpm. If the frequency of rotation changes from 600 rpm to 300 rpm then what is the work done?

Options

(a) 1470 J
(b) 1452 J
(c) 1567 J
(d) 1632 J

Correct Answer:

1470 J

Explanation:

Given: Moment of inertia I = (9.8/π²) kgm²

ʋ₁ = 600 rpm = 10 rps; ʋ₂ = 300 rpm = 5 rps

.·. ω₁ = 2π ʋ₁ = 20π rad s⁻¹

.·. ω₂ = 2π ʋ₂ = 10π rad s⁻¹

Kinetic energy of rotation= (1/2) Iω²

Work done W = change in rotational kinetic energy

.·. work done W = (1/2).I [ω₂² – ω₂²]

W = (1/2) x (9.8/π²).[(10π)² – (20π)²]

= (1/2) x (9.8/π²).[-300 π²] = -1470 J

-ve sign show that rotational kinetic energy decreases.

admin:

Related Questions

  1. In an electrical circuit R,L,C and an AC voltage source are all connected in series.
  2. A particle has initial velocity (3i + 4j) and acceleration (0.1 i+0.3j). It’s speed after 10s
  3. A particle moving along a straight line OX.At a time (in second ) the distance
  4. Pick out the statement ehich is incorrect?
  5. The concentric spheres of radii R and r have positive charges q₁ and q₂ with equal