Van der waals,equation of state is(p+a/v²)(V-b)=nRT. The dimensions of a and b

Van der waals,equation of state is(p+a/v²)(V-b)=nRT. The dimensions of a and b are

Options

(a) [ML³T²],[ML³T⁰]
(b) [ML⁵T⁻²],[M⁰L³T⁰]
(c) [M²LT²],[ML³T²]
(d) [ML²T],[ML²T²]

Correct Answer:

[ML⁵T⁻²],[M⁰L³T⁰]

Explanation:

((p+a/v²)(V-b)) / nT =R

Since we have (p+a/v²), the term a/v² needs to have units of pressure for subtraction to proceed.

Therefore, aV² = pressure
a = pressure  x Volume²
=[ML⁻¹T⁻²] x (L³)²
=ML⁵T⁻²
In case of variable b, it should be same as volume as v-b should work.
b=(L³)
admin:

Related Questions

  1. An ac voltage is applied to a resistance R and an inductor L in series
  2. If we study the vibration of a pipe open at both ends
  3. The kinetic energy of α-particle emitted in the α-dacay of ₈₈Ra²²⁶ is
  4. Two charged spheres seperated at a distance d exert a force F on each other.
  5. An electric motor runs on DC source of emf 200 V and draws a current of 10 A.