The wavelength of light emitted from second orbit to first orbit in a hydrogen atom is

The wavelength of light emitted from second orbit to first orbit in a hydrogen atom is

Options

(a) 1.215×10⁻⁷ m
(b) 1.215×10⁻⁵ m
(c) 1.215×10⁻⁴ m
(d) 1.215×10⁻³ m

Correct Answer:

1.215×10⁻⁷ m

Explanation:

For hydrogen atom, energy = -(13.6 / n²) eV
Energy radiated = 13.6 [(1/1²) – (1/2²)] = [(13.6 × 3) / 4] eV
Energy = hc / λ = [(6.6 × 10⁻³⁴ × 3 × 10⁸) / λ × 1.6 × 10⁻¹⁹] eV
[(13.6 × 3) / 4] = [(6.6 × 10⁻³⁴ × 3 × 10⁸) / λ × 1.6 × 10⁻¹⁹]
λ = (6.6 × 3 × 4 × 10⁻²⁶) / (13.6 × 3 × 1.6 × 10⁻¹⁹) = 1.215 × 10⁻⁷ m

admin:

Related Questions

  1. A heavy stone hanging from a massless string of length 15 m is projected
  2. The equations of motion of a projectile are given by x=36 t metre and 2y=96t-9.8t²
  3. If the length of a closed organ pipe is 1.5 m and velocity of sound is 330 m/s,
  4. A particle with charge q is moving along a circle of radius R with unoform speed v.
  5. The energy released by the fission of one uranium atom is 200 MeV.