The molar specific heats of an ideal gas at constant pressure and volume are denoted

The molar specific heats of an ideal gas at constant pressure and volume are denoted by Cp and Cv, respectively. If γ = Cp/Cv and R is the universal gas constant, then Cv is equal to

Options

(a) R / ( γ – 1)
(b) (γ – 1) / R
(c) γ R
(d) 1 + γ / 1 – γ

Correct Answer:

R / ( γ – 1)

Explanation:

Cₚ – Cᵥ = R ⇒ Cₚ = Cᵥ + R
γ = Cₚ / Cᵥ = Cᵥ + R / Cᵥ = Cᵥ / Cᵥ + R / Cᵥ
⇒ γ = 1 + R / Cᵥ ⇒ R / Cᵥ = γ – 1
⇒ Cᵥ = R / γ – 1

admin:

Related Questions

  1. Electric potential at any point is V= -5x +3y + √(15) z. Then the magnitude of electric
  2. A ball rolls off the top of stair way with a horizontal velocity of magnitude 1.8 m/s
  3. The ratio of volumes of nuclei (assumed to be in spherical shape) with respective
  4. A particle A suffers on oblique elastic collision with a particle B that
  5. The electric potential at a point in free space due to a charge Q coulomb is Q x 10¹¹ v