The angular velocity of a wheel increases from 100 rps to 300 rps in 10 seconds.

The angular velocity of a wheel increases from 100 rps to 300 rps in 10 seconds. The number of revolutions made during that time is

Options

(a) 600
(b) 1500
(c) 1000
(d) 2000

Correct Answer:

2000

Explanation:

Assuming constant angular acceleration,
α=2πx300-2πx100/10
=2πx200/10
=40 π radius/s²
ω²f-ω²i=2α.θ
θ=4π²(90000-10000)/2×2πx20
=2π(80000)/40
=2πx2000
.·. Total number of revolutions=2000.

admin:

View Comments (1)

  • Average rate = (100+300)/2 = 200 rotation per second
    In 10 second rotation = 200×10=2000

Related Questions

  1. The circular motion of a particle with constant speed is
  2. Two lines of force due to a bar magnet
  3. The coefficient of mutual inductance of two coils is 6 mH. If the current flowing
  4. On a frictionless surface, a block of mass M moving at speed v collides elastically
  5. For a satellite escape velocity is 11 kms⁻¹.If the satellite is launched at an angle