A particle of mass 1mg has the same wavelength as an electron moving with a velocity

A particle of mass 1mg has the same wavelength as an electron moving with a velocity of 3 x 10⁶ ms⁻¹. The velocity of the particle is: (mass of electron = 9.1 x 10⁻³¹ kg)

Options

(a) 2.7 x 10⁻¹⁸ ms⁻¹
(b) 9 x 10⁻² ms⁻¹
(c) 3 x 10⁻³¹ ms⁻¹
(d) 2.7 x 10⁻²¹ ms⁻¹

Correct Answer:

2.7 x 10⁻²¹ ms⁻¹

Explanation:

Wavelength of particle (λ₁)
= h/mv = h / (1 x 10⁻³) x v
where v is the velocity of the particle. Wavelength of electron
(λ₂) = h / (9.1 x 10⁻³¹) x (3 x 10⁶)
But λ₁ = λ₂
h / (1 x 10⁻³) x v = h / (9.1 x 10⁻³¹) x (3 x 10⁶)
v = (9.1 x 10⁻³¹) x (3 x 10⁶) / 10⁻³
= 2.7 x 10⁻²¹ ms⁻¹

admin:

Related Questions

  1. A stone of mass 1 kg tied to a light inexensible string of length L=10/3 is whirling
  2. A drum of radius R and mass M, rolls down without slipping along an inclined plane
  3. If r denotes the distance between sun and the earth, then the angular momentum of the earth
  4. The radius of the convex surface of a plano-convex lens is 20 cm and the refractive index
  5. A particle moves in xy plane according to the equation x = 4t² + 5t + 16 and y = 5t