A disc of moment of inertia (9.8/π²) kg m² is rotating at 600 rpm. If the frequency

A disc of moment of inertia (9.8/π²) kg m² is rotating at 600 rpm. If the frequency of rotation changes from 600 rpm to 300 rpm then what is the work done?

Options

(a) 1470 J
(b) 1452 J
(c) 1567 J
(d) 1632 J

Correct Answer:

1470 J

Explanation:

Given: Moment of inertia I = (9.8/π²) kgm²

ʋ₁ = 600 rpm = 10 rps; ʋ₂ = 300 rpm = 5 rps

.·. ω₁ = 2π ʋ₁ = 20π rad s⁻¹

.·. ω₂ = 2π ʋ₂ = 10π rad s⁻¹

Kinetic energy of rotation= (1/2) Iω²

Work done W = change in rotational kinetic energy

.·. work done W = (1/2).I [ω₂² – ω₂²]

W = (1/2) x (9.8/π²).[(10π)² – (20π)²]

= (1/2) x (9.8/π²).[-300 π²] = -1470 J

-ve sign show that rotational kinetic energy decreases.

admin:

Related Questions

  1. A remote-sensing satellite of earth revolves in a circular orbit at a height
  2. According to Bohr model of hydrogen atom, only those orbits are permissible
  3. Which of the following pairs of quantities does not have same dimensional
  4. Two coils of self inductance 2 mH and 8 mH are placed so close together
  5. A 6 volt battery is connected to the terminals of a three metre long wire of uniform